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Abstract

Positive links between outcomes and and opportunities act to create
cycles of deprivation, to increase inequality, and to reduce social mobility.
Measuring and monitoring such links should be a key issue for public pol-
icy. Interventions intended to increase opportunities should be designed
to reduce these effects.

For example, broadband access affords social, educational, and finan-
cial advantages. Being online can make it easier to access jobs, bargains,
information, and education. Increasing digital participation is widely
adopted as a policy goal. However, the digital divide can magnify existing
inequality if those who are less deprived are more likely to be online.

We use this example to introduce a framework for the design of inter-
ventions that will increase opportunity without increasing inequality.

Our analysis is based on classical foundations. A generalisation of
Yule’s (1900) measure of association provides a natural measure of the
association between an ordinal outcome and a binary opportunity — a
special case of a measure introduced by Agresti (1980). We show that
this corresponds precisely to Wagstaff’s (2005) modification of the con-
centration index for the case of a binary variable. This provides a direct
interpretation of Wagstaff’s measure.

The major novelty of our approach is to separate the global effect
into local contributions. This provides a rational basis for targetted inter-
ventions. We illustrate this by analysing postcode-level Ofcom data for
availability and uptake of broadband connections at various speeds across
Scotland in relation to various factors of the Scottish Index of Multiple
Deprivation (SIMD).

∗This is an early draft of a work in progress. It is incomplete and will surely
contain uncorrected errors. Please direct any comments or suggestions to the author
michael.fourman@ed.ac.uk
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1 Methodology

We examine the effect of a binary advantage, or opportunity, on existing depri-
vation. Our discussion in this section is general, but we will use the language
of the digital divide. Our individuals are households; the online households, O,
enjoy the advantage; the offline households, Ø, do not. To simplify this initial
discussion we assume that existing inequality is represented by a total ordering,
This means that for any two households, x, y , either x ≺ y (x is more deprived
than y) or y ≺ x— one is more deprived than the other.1
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Figure 1: offline–online pairs

If we view the advantage as an opportu-
nity, then the set of offline–online pairs rep-
resents the inequalities of opportunity that
may serve to counter or reinforce existing in-
equality. We use a graphical representation
to visualise these effects.

Figure 1 shows a grid representing the
offline–online pairs from a population of one
hundred individuals.2

The dots in the diagram represent the
offline–online pairs, (d, a) ∈ Ø × O , or-
dered by ≺ in each dimension. Each col-
umn includes the pairs (d, y), for a fixed of-
fline household d and each online household
y ∈ O. Similarly, each row includes the pairs
(x, a) for a fixed a ∈ O as x ranges over the
offline households, Ø.

We colour each dot to indicate whether
it reinforces or counters the existing inequal-
ity. If a ≺ d , the dot is green; the digital
advantage counters the existing inequality. If (d ≺ a) , the dot is red; the digital
disadvantage compounds the existing inequality. We count the dots to deter-
mine how many times the more-deprived household has the digital advantage,
A (green dots), or disadvantage, D (red dots).

A = |{(d, a) ∈ Ø×O | a ≺ d}| D = |{(d, a)(d, a) ∈ Ø×O | d ≺ a}| (1)

The difference, D −A, normalised to a [−1,+1] scale, gives a natural measure,
ω, of the tendency of the digital divide to exacerbate existing inequality. It is
simply related to the odds, od≺a , for a randomly selected offline–online pair,
that the digital disadvantage reinforces the existing inequality (d ≺ a).

ω =
D −A

D + A
od≺a =

1 + ω

1− ω
=

D

A
(2)

1Adjustments to address the common case in which inequality is quantified in terms of an
index of deprivation, making ≺ a partial linear order, will be described below.

2The allocation of the advantage has been drawn randomly, with the probability of being
online ranging linearly from 0.4 for the most deprived individual, to 0.9 for the least deprived.
In this example, 41 households remain offline, while 59 are online.
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The proportion of offline–online pairs d, a for which d ≺ a is (1 + ω)/2.
In §1.2 will show that ω is precisely Wagstaff’s concentration index.

1.1 Effect on Deprivation

We extend the ideas of the previous section to compare each household with the
set of all those who are more fortunate.

Given a set Y , we define the sets of those less and more advantaged than an
individual, x.

Y ≺x = {y ∈ Y | y ≺ x} Y �x = {y ∈ Y | y � x} (3)

We compute digital advantage and disadvantage of each household x with re-
spect to those more fortunate, Y �x. The basic equations (??) reduce to

if x ∈ O A(x, Y �x) = Ø�xY D(x, Y �) = 0

if x ∈ Ø D(x, Y �x) = O�xY A(x, Y �) = 0
(4)

Each row represents an online household, a. The green dots in this row
represent pairs a, d such that a ≺ d and d ∈ Ø(d). There are Y �aØ such pairs.
Each column represents an offline household, d. The red dots in this column
correspond similarly to Y �dO .

The Lorenz Curve is a line separating the red and green circles. Each dot is
placed in the centre of a grid square. Since ≺ is total, each online household falls
between two offline households, and vice-versa. For each index, 0 ≤ j ≤ 100,
the Lorenz curve plots the number of households in P≺j = {xi | i < j} that are
online, P≺jO , against the number that are offline, P≺jØ .

For any set X we aggregate the effects to define ωX,Y � , which measures the
impact of the digital divide on X’s deprivation, relative to those more fortunate.

A(X,Y �) =
∑
x∈X

A(x, Y �x) =
∑

a∈OX

Ø�aY

D(X,Y �) =
∑
x∈X

D(x, Y �x) =
∑

d∈ØX

O�dY

ωX,Y � =
D(X,Y �)−A(X,Y �)

D(X,Y �) + A(X,Y �)

(5)
In what follows, we will generally consider subsets X of some fixed popu-

lation, Y . We write ωX , for ωX,Y � , and just ω for ωY,Y � . The areas above
(red, disadvantage) and below (green, advantage) the Lorenz curve represent
D(Y, Y �) and A(Y, Y �) respectively. So ω = ωY,Y � is the classical Gini index
for our (non-classical) Lorenz curve. The index is the difference between the
areas below and above the Lorenz curve, expressed as a percentage of the total
area. For Figure 1 it is ω = 39%.

This index is an example of the “ordinal measure of association defined by
the ratio of the proportions of concordant and discordant pairs” studied by
Agresti [1]. The odds that d � a, given that a is online and d is offline, are
given by ω∗.

ω∗ =
1− ω

1 + ω
=

A(Y, Y �)

D(Y, Y �)
=

∑
a∈OØ�a∑
d∈ØO�d

(6)
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Since if a ∈ O then Ø�a + Ø≺a = Ø, and similarly O is split by any d ∈ Ø , we
can also define ωY,Y � by a sum over columns, or by a sum over rows.

A(Y, Y �) =
∑
a∈O

Ø�a =
∑
d∈Ø

O≺d ω =
1

Ø

∑
d∈Ø

O�d −O≺d

O
(7)

D(Y, Y �) =
∑
d∈Ø

O�d =
∑
a∈O

Ø≺a =
1

O

∑
a∈O

Ø≺a −Ø�a

Ø
(8)

If we define the advantage of an individual x relative to a set X by

xY =
X≺x −X�x

X≺x + X�x
, then ω =

1

O

∑
a∈O

aØ = − 1

Ø

∑
d∈Ø

dO . (9)

Thus the index ω may be interpreted as the average advantage of an online
houshold relative to the set of offline households, or the average disadvantage
of an offline household relative to the set of online households.

If we add an extra online household, x, to our population, we add an extra
row. The new index ω+ is given by

Oω =
∑
a∈O

aØ (O + 1)ω+ = Oω + xØ ω+ − ω =
xØ − ω

O + 1
(10)

Similarly, if we remove an offline household, x, we remove a column. In this
case, the new index ω− is given by

Øω = −
∑
d∈Ø

dO (Ø− 1)ω− = Øω + xO ω− − ω =
xO + ω

Ø− 1
(11)

Suppose we have a population with index ω. We apply (11) followed by (10)
to calculate the effect of taking an offline household, x, online.

ω− = ω +
xO + ω

Ø− 1
ω−

+
= ω +

xO + ω

Ø− 1
+

xØ − ω

O + 1
− xO + ω

(Ø− 1)(O + 1)
(12)

Rearrange the second equation:

(Ø− 1)(O + 1)(ω−
+− ω) = (xO + ω)(O + 1) + (xØ − ω)(Ø− 1) + xO + ω

(13)

= (O−Ø)ω + OxO + ØxØ + 3ω + 2xO − xØ (14)

Divide the rhs by the number of individuals, N to conclude that

ω−
+
> ω iff (p− q)ω + x≺ +

3ω + 2xO − xØ

N
> 0 (15)

Thus, the more households there are online, and the greater the digital divide,
ω, the more likely it is that getting more households online will increase inequal-
ity. For large N we ignore the final term and apply the following criterion to
determine the households, x, which must go online if we are to reduce ω.

ω−
+
< ω iff x≺ < (q − p)ω (16)
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1.2 Wagstaff

on
lin
e

offline

We extend our treatment to a deprivation ordering ≺
defined in terms of an index, I : Y → R, and show
that ω is precisely Wagstaff’s [2] concentration index
for a binary variable. We define:

x ≺ y iff I(x) < I(y)

x � y iff I(x) ≤ I(y) (17)

x ≈ y iff I(x) = I(y)

The relation ≺ is no longer a total order, but it is
linear in the sense that, for any z, if x ≺ y then x ≺ z
or z ≺ y.

Again, for each index, we plot the cumulative number of households online
against the cumulative number offline. This figure shows data for a population
of 20,000 individuals, with 20 levels of deprivation. To generate this example,
the uptake for each level of deprivation has been sampled from a beta-binomial
whose mean varies linearly with deprivation in the same way as in our previous
example.

In this case, for each value of the index, the offline–online pairs of households
with the same index lie in a rectangle not covered by the rules given above (4).
We draw the Lorenz curve as a diagonal line across each of the rectangles. This
corresponds to a linear interpolation of the Lorenz curve, between points given
by the cumulative offline/online data for each level of deprivation.

Each advantage within the community of households sharing a common level
of deprivation, is balanced by a corresponding disadvantage. The equations (18)
adjust the definitions (4) of A and D to share the advantages and disadvantages
equally, over the online and offline households (respectively) at this level of
deprivation.

A(a) = #{y ∈ ØY | a ≺ y}+
1

2
#{y ∈ ØY | y ≈ a}, for each a ∈ OY ,

D(d) = #{y ∈ OY | d ≺ y}+
1

2
#{y ∈ OY | y ≈ d}, for each d ∈ ØY .

(18)

If we scale both online and offline populations to [0, 1], then ω is given as
the Gini index –the difference between the areas below and above the curve– for
a Lorenz curve plotting cumulative proportion of the online population against
cumulative proportion of the offline population.

We now show that ω is exactly Wagstaff’s index. Consider a population
U with V households online Wagstaff plots the cumulative online population,
v, against cumulative population, u, ordered by index of deprivation, to give a
concentration curve.

The concentration index is the difference between the areas below and above
the curve, expressed as a proportion of the total area, U ×V . Wagstaff corrects
the concentration index for this curve, dividing it by q = U−V

V , the proportion
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of the population offline. This is equivalent to expressing the Gini difference as
a proportion of the area of the parallelogram shown in Figure ??.

For each point (u, v), on Wagstaff’s Lorenz curve, the corresponding offline
population is u − v. so, transforming the parallelogram linearly to the unit
square

(u, v) 7→
(

u− v

U − V
,
v

V

)
transforms Wagstaff’s Lorenz curve to ours, which shows that our index does
indeed correspond to his.

1.3 Interpretation

{d, a | d ≺ a} pq
1 + ω

2
(19)

{d, a | a ≺ d} pq
1− ω

2
(20)

{d, d′ | d ≺ d′} (21)

{a, a′ | a ≺ a′} (22)

We now interpret ωX as a generalised odds ratio statistic We analyse in-
equalities in the distribution of fixed broadband connections across Scotland,
and their effects on existing inequalities, as measured by the Scottish Index of
Multiple Deprivation (SIMD).
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